3.366 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=137 \[ -\frac{2 \left (-3 a^2 B+3 a A b-b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac{2 a^2 (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^3 d (a+b)}+\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 B \sin (c+d x) \sqrt{\cos (c+d x)}}{3 b d} \]

[Out]

(2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(b^2*d) - (2*(3*a*A*b - 3*a^2*B - b^2*B)*EllipticF[(c + d*x)/2, 2])/
(3*b^3*d) + (2*a^2*(A*b - a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^3*(a + b)*d) + (2*B*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(3*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.513183, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2990, 3059, 2639, 3002, 2641, 2805} \[ -\frac{2 \left (-3 a^2 B+3 a A b-b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac{2 a^2 (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^3 d (a+b)}+\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 B \sin (c+d x) \sqrt{\cos (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

(2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(b^2*d) - (2*(3*a*A*b - 3*a^2*B - b^2*B)*EllipticF[(c + d*x)/2, 2])/
(3*b^3*d) + (2*a^2*(A*b - a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^3*(a + b)*d) + (2*B*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(3*b*d)

Rule 2990

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x
])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c -
b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m,
1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx &=\frac{2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b d}+\frac{2 \int \frac{\frac{a B}{2}+\frac{1}{2} b B \cos (c+d x)+\frac{3}{2} (A b-a B) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b}\\ &=\frac{2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b d}-\frac{2 \int \frac{-\frac{1}{2} a b B+\frac{1}{2} \left (3 a A b-3 a^2 B-b^2 B\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^2}+\frac{(A b-a B) \int \sqrt{\cos (c+d x)} \, dx}{b^2}\\ &=\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b d}+\frac{\left (a^2 (A b-a B)\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^3}-\frac{\left (3 a A b-3 a^2 B-b^2 B\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 b^3}\\ &=\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac{2 \left (3 a A b-3 a^2 B-b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^3 d}+\frac{2 a^2 (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^3 (a+b) d}+\frac{2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 b d}\\ \end{align*}

Mathematica [A]  time = 1.41444, size = 209, normalized size = 1.53 \[ \frac{-\frac{3 (A b-a B) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}+\frac{(3 A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+B \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )+2 B \sin (c+d x) \sqrt{\cos (c+d x)}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

(((3*A*b - a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + B*(2*EllipticF[(c + d*x)/2, 2] - (2*a*Ell
ipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) + 2*B*Sqrt[Cos[c + d*x]]*Sin[c + d*x] - (3*(A*b - a*B)*(2*a*b
*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 +
 b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/(3*b*d)

________________________________________________________________________________________

Maple [B]  time = 3.556, size = 786, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((-4*B*a*b^2+4*B*b^3)*cos(1/2*d*x+1/2*c)*sin(1/2*d
*x+1/2*c)^4+(2*B*a*b^2-2*B*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+3*A*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2*b-3*a^3*B*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*a^2*b*B*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*a*b^2*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(
1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^3)/b^3/(a-b)/(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a), x)